MAX materials and MXene materials are new two-dimensional materials who have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. The following is an in depth overview of the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is really a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers back to the main-group elements, and X means the components of C and N. The MXene material is really a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the superb physical properties of MAX materials make sure they are have an array of applications in structural materials. As an example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be utilized in energy materials. As an example, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which can be used a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials certainly are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The surface of MXene materials can interact with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new form of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. For instance, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials may also be used as catalysts in fuel cells to improve the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. As an example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. As an example, MXene materials can be used as gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. Furthermore, MXene materials may also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with all the continuous progress of science and technology as well as the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. The subsequent aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and methods may be further explored to understand a more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, there is however still room for more optimization. Later on, the composition, structure, surface treatment as well as other elements of the content may be studied and improved in depth to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in numerous fields, but you can still find many potential application areas to become explored. Down the road, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. With all the continuous progress of technology and science and also the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.